Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
EPMA J ; 11(3): 377-398, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-1116599

ABSTRACT

The Warburg effect is characterised by increased glucose uptake and lactate secretion in cancer cells resulting from metabolic transformation in tumour tissue. The corresponding molecular pathways switch from oxidative phosphorylation to aerobic glycolysis, due to changes in glucose degradation mechanisms known as the 'Warburg reprogramming' of cancer cells. Key glycolytic enzymes, glucose transporters and transcription factors involved in the Warburg transformation are frequently dysregulated during carcinogenesis considered as promising diagnostic and prognostic markers as well as treatment targets. Flavonoids are molecules with pleiotropic activities. The metabolism-regulating anticancer effects of flavonoids are broadly demonstrated in preclinical studies. Flavonoids modulate key pathways involved in the Warburg phenotype including but not limited to PKM2, HK2, GLUT1 and HIF-1. The corresponding molecular mechanisms and clinical relevance of 'anti-Warburg' effects of flavonoids are discussed in this review article. The most prominent examples are provided for the potential application of targeted 'anti-Warburg' measures in cancer management. Individualised profiling and patient stratification are presented as powerful tools for implementing targeted 'anti-Warburg' measures in the context of predictive, preventive and personalised medicine.

2.
Front Pharmacol ; 11: 1307, 2020.
Article in English | MEDLINE | ID: covidwho-769287

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is responsible of variable clinical manifestations, ranging from no symptoms to severe pneumonia with acute respiratory distress syndrome, septic shock, and multi-organ failure resulting in death. To date no specific antiviral drug have been approved for COVID-19, so the treatment of the disease is mainly focused on symptomatic treatment and supportive care. Moreover, there are no treatments of proven efficacy to reduce the progression of the disease from mild/moderate to severe/critical. An activation of the coagulation cascade leading to severe hypercoagulability has been detected in these patients, therefore early anticoagulation may reduce coagulopathy, microthrombus formation, and the risk of organ damages. The role of heparin in COVID-19 is supported by a lot of studies describing its pleiotropic activity but it must be proven in clinical trials. Several protocols have been designed to assess the risk-benefit profile of heparin (low-molecular-weight or unfractionated heparin) in hospitalized subjects. Although prophylactic doses may be adequate in most patients, it is important to wait the results of clinical trials in order to define the appropriate effective dose able to improve disease outcome.

SELECTION OF CITATIONS
SEARCH DETAIL